Steady State Solutions for a System of Partial Differential Equations Arising from Crime Modeling
نویسندگان
چکیده
I consider a model for the control of criminality in cities. The model was developed during my REU at UCLA. The model is a system of partial differential equations that simulates the behavior of criminals and where theymay accumulate, hot spots. I have proved a prior bounds for the partial differential equations inbothone-dimensional andhigherdimensional case, which proves the attractiveness and density of criminals in the given area will not beunlimitedlyhigh. In addition, I have foundsome local bifurcation points in the model.
منابع مشابه
On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملThe Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)
In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...
متن کاملCoupled Integral Equations Approach in the Solution of Luikov Equations with Microwave Effect
The objective of this study is to present a mathematical modeling and solution approach for the drying process of spheroidal solids with the application of microwave in capillary porous media based on the Luikov equations, composed of a system of linear and coupled partial differential equations arising from the energy, mass and pressure balances inside the solid matrix. Additionally, the power...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کامل